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Abstract--In designing a thermal protection made of ablating composite materials, constructors usually 
make calculations only for a heat field and a rate of material ablation ; strength calculations are usually 
conducted only for determining thermoelastic stresses. However, there are known cases when thermal 
protection constructions designed this way and made of glass-plastics have destructed due to the action of 
the following effects that are usually not considered : pore pressure of gaseous pyrolise products generated 
in heating a composite, and shrinkage of a composite in heating up to the pyrolise temperature. To take 
account of these effects and conduct heat and strength calculations of thermal protection, in this paper a 
new mechanical-mathematical model is developed wherein ablating composites are considered to be porous 
multiphase media with phase transformations and chemical reactions of components in heating. The 
distinctive peculiarity of the model is that it allows description of the effect of physical-chemical trans- 

formations on a stress-strain state of the material. 

INTRODUCTION 

Ablating composite materials represent the unique 
case when a non-stable system, that is polymer com- 
posites at high temperatures, is used premeditatively 
in crucial elements of construction, for example in 
heat protection of vehicles, in determination of a glass- 
plastic construction resource in fire etc. 

The reason for non-stability of composites lies in 
the fact that at high temperatures there are phase 
transformations, i.e. thermodestruction of  polymer 
components  with formation of a solid residue, usually 
a coke, and generation of a large quantity of gases in 
the pores. 

At present, calculation methods for heat-mass 
transfer processes in ablating composites are well 
enough developed [1]: however, strength problems 
for their use in construction have been insufficiently 
studied. In the present paper the problem statement 
on determination of thermostresses in construction of 
ablating materials is given, an example of numerical 
solution of the problem for a cylindrical shell is 
presented, and peculiarities due to the presence of 
heat-mass transfer in the material are shown. 

MATHEMATICAL MODEL 

An ablating composite material is considered to be 
a multiphase system consisting of four phases: the 
first phase is a thermo-stable filler (carbon glass fibers 
which are thermostable in the considered temperature 
interval in an inert medium);  the second phase is a 
solid polymer binder (epoxy-phenol, phenol and other 
resins) which thermodestruct at high temperatures;  

the third phase consists of solid products of ther- 
modestruction (usually a coke) ; and the fourth phase 
consists of gaseous thermodestruction products in 
pores. If strains of solid phases are considered to be 
small, gas filtration in the pores is assumed to be 
subject to Darcy's equation, and the heating process 
is so relatively slow that temperature equilibrium has 
time to reach steady state for all phases with the same 
temperature, 0, then the heat-mass transfer equation 
system for the porous multiphase medium described 
is written in the following form [2, 3] : 

p 2 ~ -  t = - J  (1) 

~Pg~g = V~. (R~K. Vxpg0) + J F  (2) 
~?t 

O0 
p c - ~  = Vx" (2 "V~0) + Rcgq~gVx0 

• K . V x p g O - J A e  ° (3) 

V," ~ o ~ -  vxtpgp = 0 (4) 

where ~o~, P2 are volumetric concentrations and den- 
sities of solid phases (i = l, 2, 3), pg is the density of 
gas in pores, tpg is porosity, a is the stress tensor of all 
solid phase collections, being a unified frame, ci is the 
phase heat capacity, and R is the gas constant. 

Volumetric coke concentration, and also porosity 
and concentration of a solid frame ~os, can be ex- 
pressed in terms of ~o2 : 

~ = (~o~(O) -- ~ ) ( l  -- r)  P--~ 
P3 
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NOMENCLATURE 

material constants describing a change 
of strength and elastic features of 
composites with temperature 
specific heat capacities of phases 
[m 2(s 2K ')] 

rate of a surface ablation [ms '] 
elasticity modules of phases 
[kg m -  ' s 2] 

shape of phase separation surface 
intensity of mass transfer from 
polymer phase to gas [kg (m 3 s) '] 
material constant  characterizing a 
mass transfer from polymer phase to gas 
[kg (m 3 s ) - ' ]  

gas pressure on an external composite 
surface [kg (m s 2)-- i] 
pore gas pressure [kg (m s 2) ~] 
time [s]. 

Greek symbols 
~;, e~, coefficients of heat phase expansion 

[K '1 
~T coefficient of heat transfer [kg (s 3 K) ~] 
fl~,fi~h shrinkage coefficients 
F gasification coefficient 
Ae °,Ae* heat of volumetric 

(thermodestruction) and 
surface ablation 

£, e,;; strain tensor and its 
components 

0 temperature 
2,, components of a heat-conduction 

tensor [kgm(s3K) t] 
v~, Poisson coefficients 
pg, p; phase density [kgm ~] 
a;/ stress tensor's components. 

Subscripts 
bl (blow) indicator of parameters of 

outflowing gas into the 
surroundings 

e (external) parameters related to the 
surroundings with respect to the 
considered domain 

g (gas) parameters of a gas phase 
i number  of a composite phase 

(i = 1 . . . . .  3) 
i, j indicator of a tensor component  

(i, .i = 1,2, 3) 
s (solid) parameters of a solid 

framework 
V occupied by a composite 
W parameters on an external composite 

surface 
indicator of a tensor. 

(~0s = (Pl + ~02 ( 1 - - ( l -  F )P2]  + ~°2 ( 0 ) ( l p 3  / -- F) P--2P3 

(p~ = l - (p~ (Pl = const. (5) 

Funct ion J describes heat mass transfer intensity 
in thermodestruction in accordance with Arrhenius 's  
law : 

J=J0~o2exp  - ~  . (6) 

F is the gasification coefficient of the composite in 
thermodestruction, and 2 and K are heat-conduction 
and gas-permeability tensors, respectively, that 
depend on the porosity ~Og : 

-2 = E f ( ( p g )  ; K = K ° f ( C p g )  f ( ( p g )  = exp (Sq~g). 

(7) 

Here 2 °, K ° are constant  tensors and S is the material 
constant. 

Gas in pores is assumed to be ideal and perfect : 

p = RpgO (8) 

where p is pore gas pressure. 
If we introduce a stress-tensor function F so that 

± 
q = '~p0~+ Ink F (9) 

where Inkf f  is the differential operator of incom- 
patibility [4], then equilibrium equation (4) is satisfied 
identically. To determine a stress strain state in an 
ablating composite, the compatibility equation for 
strains r, [4] should be considered : 

Ink£ = 0. (10) 

Const i tu t ive  relations 

The thermodestruction process of composites can 
be considered as a phase transformation of the poly- 
mer phase into a collection of a new solid phase and 
a gas phase. For  media with internal phase trans- 
formations of such type, constitutive relations of their 
solid frame correspond to the model of viscoelastic 
unstable medium, even if all the phases are elastic 
media. 

An ablating composite is assumed to be an ortho- 
tropic material with orthotropy axes Ox, ,  i = 1,2, 3, 
having a laminated structure, and the Ox~ axis being 
perpendicular to the layers. 

The constitutive relations can be written in the 
following form : 
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O=ii -}-p-- Vl2 (0-22 +p) 
gll = e t l +  

E , a  ° 

vl3(0-33 +P) 
+ W1PI 

El ~o 

~22 +p--v2,  (a.) +p) 
822 = ~22 -~ 

E2a ° 

v>(0-33 +P)  
- ( 1 1 )  

E2a ° 

0"33 -~P--Y32 (0-22 -~-P) --Y31 ( a l l  -I-P) 
E3~ = /!33 -}- 

E3,~ ° 

0-KI 
G ,  - + W ~ P ~  t¢=2,3 

2G~16 ° 

0"23 
c23 - (12) 

2G236 ° 

where v 0, &, G0are elastic constants, W~ is viscoelastic 
strain caused by composite thermodestruction and 
satisfying the differential equations : 

[/V~ +03Q,  W, = at,O3 

I47~+o3Q~W~. = G.O3 K = 2,3 (13) 

where &,  Q~ are material constants determined in 
experiments. It should be noted that viscoelastic fea- 
tures of laminate ablating composites appear most 
clearly in interlayer shears and in the transversal direc- 
tion, i.e. where the influence of a thermodestructing 
composite matrix is the most. 

Functions ~0 describe a change of elastic features 
with temperature : 

C C', ) ~o ~ --blr: t--r) h'-,(O(r)--Oo)dz +./93,,q}3 a~. = exp 
o;~o_ \ do 

~: = 1,2. (14) 

Heat deformations ~ of the composite in ther- 
modestruction take account not  only of heat expan- 
sion at relatively low temperatures, but also of a 
shrinkage at thermodestruction temperature : 

;o ~K = CXZa'(0-- 00)-~-~3~: g030 d'c--flxq)3. (15) 

Here bt~, bz~, b3~, ~2~, e3~,/3~, K = 1,2, are constants 
determined in experiments. 

The problem statement to determine thermal 
stresses in a construction occupying the region V con- 
sists of  solving the equation system (1)-(3), (4), (13), 
where relations (12) and (9) should be substituted for 
nine functions ~02, pg, 0 and F ,  (components of tensor 

in the coordinate system Ox,), and the following 
boundary  conditions at surface E of region V should 
be added : 

q)~0-'n+q~gpn= S~, x ~ ;  

V~.pgO= o, X~Yv 

RpgO = p'~ x ~ Ep 

n.2"V~0 = qe+Yblq)gRn'K 

" VxpgO(le --18) -- p~DwAe* 

Initial conditions are 

x6E .  (16) 

t = 0 :  p g = p  ° q)2---~p ° 0 = 0 0  W ~ = 0 .  (17) 

Here n is a vector of an external normal to surface 
£, Zv is the hermetic surface part, and at the surface 
part Yp the velocity head is given: Pe = Pe+P'o, 
P'O = peV~, where pc, Ve are density and normal 
velocity, respectively, of external gas medium in con- 
tact with the construction considered, Z = Ev w Z v, q¢ 
is a heat flux to surface £, having in the case of con- 
vective heating the following form : 

q~ = (le--18) (18) 

where 7v is the heat transfer coefficient, I,, lg are 
enthalpies of external gas medium and pore gas on 
the surface £, respectively, I~ = c80~, 18 = c80, Oe is the 
temperature of the external medium, and 7b~ is the 
coefficient of blowing the gaseous thermodestruction 
products into the external medium [1], 0 ~< 7~ ~< 1. 

Under  the action of a heat flow on the surface '~, 
physical-chemical transformations (surface ablation) 
can also occur: evaporating, melting, thermo- 
mechanical destruction etc., due to the fact that sur- 
face Z bounding a solid phase of region V will be a 
variable. In this case a kinetic equation should be 
added to the equation system considered above : 

8.tm +Dw(V,l . .V,/ , ) l . .2  = 0, [(0, x) = / ( ) (x )  (19) 
~t " " 

that describes a change of surface £(t)  location, where 
f ( t ,  x) = 0 is the equation of surface X and Dw is the 
rate of surface ablation. 

For  the case of thermomechanical ablation of a 
composite, the rate Dw depends on surface tem- 
perature 0w and velocity head p'~, and has the fol- 
lowing form. 

, <,.--,),.-. 
O w ~=~-- 

p~ C~ 
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CYLINDRICAL SHELL 

Let us consider now a solution of the problem stated 
above for a cylindrical shell subjected both to intensive 
internal convective heating and internal pressure p~ 
distributed uniformly at the inner surface r = rD. 
Introduce a cylindrical coordinate system OrOz and 
assume the composite material of  the cylinder is cyl- 
indrically orthotropic ; then the constitutive relations 
(11)-(18) keep their validity if, in place of Descartes's 
components  ~r0, eiJ, their physical components,  are 
substituted. One end of the cylinder, z -- 0, is rigidly 
fastened and at the other end the pressure P,3 is given ; 
the ends are assumed to be hermetic and heat-isolated. 
The exterior cylinder surface, r = r> is fastened to- 
gether with a load-bearing shell. Due to thermo- 
mechanical ablation, the surface r = rD(t) will be 
mobile. 

Within the scope of these assumptions, the problem 
(1)-(4), (13) solution is sought in terms of functions 
~o~, pg, 0, F~ -- F and W1, depending only on r and t. 
Equations (9) can be rewritten in the case as follows : 

q ~  F ~%o F '  
air = - - + - -  c r 2 2 = - - + - - .  (21) 

~p~ ~psr qg~ ~o~ 

The rest of  the stresses are equal to zero except a~, 
which can be expressed by the formula 

~ = #,oG,, + #~o,~2 -p( l  -#,o -#2o) 

v13 a° 
#,o #~o -- -~2~  

a2 

+ a ° E 3  ( C -  ~33) 

(22) 

where C(t) = e33 is a function of time which can be 
determined by the following approximate formula 
(when Poisson effects at the cylinder end are neg- 
lected) : 

p~3(r 2 - r  2) 
C ~ g33 (23) 

2E3 d°rdr 
dR; 

Here the designation F' =- OF/Or is introduced. 
Constitutive relations (11) and (13) are reduced to 

the form : 

Ell = ~ll -~-~loC-~-~l i Oll -~-~12022 

~22 = ~22 "~/~20C~-/~12°'I 1 +#220"22 

W,+(p3W,  Q, = ~b3 ( F  + q ~ g p ) q ~  (24) 

where 

1 v~i 

E,a ° E~a~ 

11120 11311132 
¢/12 i =  1,2 

Et6  ° E3c7 ° 

~11 = ~11 -t '-fl10(C--E33) ~" W3P3 

o 
~:22 = ~,, + # 2 0 ( c - ~ . , )  (25) 

and heat deformations ~r, go, iz are expressed by for- 
mulae (15) with indexes ~,- = 1, 2, 3, respectively. 

Compatibility equations (10) in this case are 
reduced to the one, which after substituting relations 
(9) and (11) into it, has the form 

o £ 
+ ~ 0 g p ( # 2 : _ p , , ) + ~ ; , + a : 2 - ~ l ,  _ 0 (26) 

r r 

where/~(, = [J(,/q)~. 
Heat mass transfer equations (1) (3) for a cyl- 

indrical shell have the form : 

P:~2 = - J  

1 
(p~(pg)e = _ (RK t , r (pgp ) ' ) '+JF  

r 

pcO = l ( 2 ~ r 0 , ) , + c g R K i , 0 , ( p g 0 ) , _ j A e  °. (27) 
r 

Boundary conditions for equation system (26), (27) 
have the form : 

F 
r = r D ( t ) :  -- P~l RpgO = p~l 

r D 

-2110'  = o~v(O~-0)-q~p~DwAe* 

-Tb, CgRK,,(pg0)'(0~-0) (28) 

r = r2 : ~o~ +~0gp = -P~2 ( l - v n ) r 2  

× ( ~ 2 2 - [ - / ~ 1 2 ( f - F @ g p ) - [ - / ~ 2 2 ( F ' + q o g p ) )  

(pg0)' = 0 (29) 

where En, Vn and hn are the elasticity module, the 
Poisson coefficient and the substrate thickness, respec- 
tively. 

The equation of the inner mobile surface has the 
form : 

eD = Dw rD(0) = r, .  (30) 

Introducing now a new mobile coordinate y in place 
o f  r, 

y =  k( t )r+b(t)  

k ( t ) -  r 2 - r l  b ( t ) - - rz (r l - - rD( t ) )  (31) 

varying within the interval r~ ~< y ~< r2 for all t >/0 
while rD(t) <~ r <~ r2. 

Introducing the auxiliary function ~(v, t) 
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Dw ( I% - - r  I 
~ 0 ' . t ) -  , - " 

r2 - rD (t) \(r~ -- rD(0) 2 

x(Y--b(t) +r')--r2) k ~  _ (32) 

Then, passing to new variables ( y ,  t), the equation 
system (26), (27) will be written in the form 

J 
0~: + ~(P~ - (33) 

P2 

- k~-b(RK,,(y-b)(pgO)')'+JF.,_ (34) 

/'cO-+t,c~O'=y~(;'~,,(y-b)O')" 

+%k2RK~O'(pgO)'-JAe ° (35) 

' +  F 
+ i r - b  

l C22 --,qt l  
+~. ~i,q v-,5 

+P(fiz2+fi,~)'+ vPh(fi22-fi,,)]=O (36) 

I~"+;WI+(P~Q'W' =(°~3( F ) q~ y - b  +PuP (37) 

where F '  ~ (?F/@. 
Boundary conditions (28) in variables (y, t)  are 

writlen in the lbrm 

r = rl: F= --rDpcl RpgO = --P~I (38) 

-2, ,  kO' = (~r - 2B, c~RK,, (pg0)') 7:~_ \ 0e 

x (0~. - O) - p~q)~DwAe* (39) ~ 3 

and the boundary condition (29) keeps its form. .:.: 
Adjoining initial conditions to the system (33)-(38), o w ~ 0 / w  
(29). ~? ~ 2 

O 
1 = 0" q~_, ¢po o = 2 pg = pg 0 = 0 o W~ = 0 ~T 

- ) /  
we get the complete problem statement to determine ~ '~ 
functions ~o,, p~, 0, F and W~, after showing that the ~ ~ 
s t r e s s e s  0-11 , 0-22 , 0-33 can be evaluated according to ~ 1 ~1 ~ , ~ "  
equations (21) and (22). ~o 

C O M P U T E D  R E S U L T S  I I I 
5 l 0  15 

Solving the problem was performed numerically 
with the help of the step-by-step method using differ- t [sl 
ence schemes and sweep procedures. Fig. 1. Dependence of temperature 0¢ and pressure p~ of 

external gas medium, temperature 0w of the cylinder surface 
Computed results have been obtained for glass- heated and relative thickness Ar of material, moved away in 

plastic on epoxy-phenol binder and silica fabric. In time, where t is time Is]. 

computations the following values of the constants 
were given : 

b l ] = l . 2 K  I ( s )~ ' - I  b 2 t = 0 . 4 2  b~t = 5  

b 1 2 = 0 . 5 K  l(s)<'~'-I b22=0 .22  b - , 2=5  

~21 = 2 0 " 1 0 - 6 K  ] ~3t = 2 " 1 0  6K ~ /:¢1 = 5  

~ 2 2 = 4 " 1 0 - ( ' K  -I ~ 3 2 = 2 " 1 0  "K I fie =0 .05  

~z3 = 4 " 1 0 - e K  -I  ~ 3 3 = 2 " 1 0  ~K I f l~=0 .05  

p~ = 2 . 5 " 1 0 3 k g m  -3 P2 = 1.2" 103kgm 3 

p 3 = 2 . 2 . 1 0 3 k g m  3 Q = 0 . 8 9 k J k g  IK  ~. 

c 2 = 0 . 6 k J k g  I K - I  c ~ = l . 5 k J k g  ~K ] 

C g = 3 . 1 k J k g - i K  i 2 1 3 = 0 . 5 1 W t  m 3 K - t  

2 2 ~ = 0 . 2 7 W t m  3 K - I  .;.> = 0 . 5 W t m  3K -~ 

2 g 3 = 0 . 1 W t m - 3 K  i J 0 = 3 . 2 " 1 0 6 k g m  ~s 

E jR=5 .5 .103K F = 0 . 7 8  

K ° = 1.8"10-19s S = 1 0 0  a b = 2 0 0 M P a  

n = 5  El = 2 0 G P a  E~ = 2 0 G P a  

E 3 = 2 G P a  vl2 =0 .27  v2~ =0.021 

vt3 =0.021 GI2 = 8 G P a  

G23 = 0 .72GPa G I  3 = 0.72GPa. 

Geometric parameters and characteristics of the 
load-bearing shell were chosen as follows : 

rl/r 2 = 0.97 hn = 2" 10 ~ m 

Vn = 0 . 3  E n = 6 " 1 0 4 M P a .  

Conditions of thermo-force loading the cylinder are 
shown in Fig. 1 : for time t = 0.2 s the temperature 0~ 
and the pressure p~ of gas flowing along the inside 
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Fig. 2. Distribution of temperature 0 and pore pressure p vs the cylinder thickness, taking account of 
surface ablation. Symbols on curves are time t [s]. 

o (pg = 0.05 
0.3 

, 0  

_i/l_ 
I°~- 0.970 0.985 1.000 

T 
Fig. 3. Distribution of volumetric phase concentrations ~P2, ~03 and coefficient of change of elastic properties 

~1 vs the ablating cylinder thickness for different times. Symbols on curves are time t [s]. 

of  the cylinder rapidly reach a s ta t ionary  state. In a 
s ta t ionary  interval  of  heating,  the mater ia l  surface 
tempera ture  0w slowly increases, and  s imultaneously 
the composi te  surface ab la t ion  occurs practically by 
l inear law [see Fig. 1, the curve Ar( t ) ,  where Ar = 
(rD(t) -- rO/r2]. 

Due to the presence of  a surface abla t ion,  there 
exists a solut ion only in the interval  ~D(t) ~< ~ ~< 1 ; 
therefore on  the left f rom the poin t  r = rD(t) all the 
funct ions  terminate  (Figs. 2 5). 

As seen f rom Fig. 2, the pore  p re s su rep  is localized 
in a compara t ive ly  na r row zone cor responding  to the 
interval  where the t empera ture  falls off. It is connected  
to the fact that ,  in a colder zone where the composi te  
is no t  hea ted  to the rmodes t ruc t ion  temperatures ,  the 
mater ial  gas-permeabil i ty is very small, but  in a zone 
coked, with porosi ty  ~Og ~ 0.26, on  the contrary ,  great  

rates of  gas fi l tration to the internal  surface arise. 
leading to equal izat ion of  p with the inner  pressure 

Pel l 

In the computa t ions  the value of  the initial mater ial  
porosi ty was varied, ~0 ° = 0.05 and  0.1. A con- 
siderable value of  the inner  pressure P,[, which is 
characteris t ic  for problems of  this type, leads to an 
increase in the compressing radial  stress ~r (Fig. 4), 
having at initial time t < 3 s practically a l inear dis- 
t r ibut ion th rough  the thickness. Peaks of  stresses o-~ 
which appear  when t > 3 s are connected  to a local 
growth of  pore pressure p in a composi te  thermo-  
des t ruct ion zone. For  a mater ia l  with initial porosi ty 
q~g = 0.05, the value of  these peaks is substant ial ly 
more  than  for ~Og = 0.1, and  when  t > 12 s, local ten- 
sile stresses arise in the composite.  

A profile of  the stress m~ at  initial t ime t ~< l0 s is 
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0 
9~ = 0.05 

{_ . . . .  I/ 
- 4  - -  7 

-6 

I I 
0 . 9 7 0  0 . 9 8 5  1 . 0 0 0  

Fig. 4. Distribution of radial stress ar vs the ablating cylinder thickness. Symbols on curves are time t [s]. 
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Fig. 5. Distribution of tangential stress tr0 vs the ablating cylinder thickness for different times. Symbols 
on curves are time t [s]. 

determined, in the main, by the presence of  the inner 
gas pressure Pel and by the temperature gradient. That  
is why there are tensile stresses through all the cylinder 
thickness and a minimum of trs at the internal surface 
(Fig. 5). When t > 10 s, a material thermodestruction 
becomes essential, leading to an increase in two 
additional factors having an effect on the stress cr.~, 
a formation of  local pore pressure and a composite 
shrinkage in coking. The local pore pressure causes 
local minimums of  a~ to appear, but the shrinkage, on 
the contrary, leads to increasing the stresses tr:~ at the 
internal cylinder surface. Decreasing the glass-plastic 
thickness practically to half-thickness due to surface 

ablation leads to an increase in the maximum of 
stresses ao from 60 to 85 MPa. 

As follows from Fig. 5, it is tangential stresses a,~ 
that are the most dangerous for similar types of  glass- 
plastic constructions that are connected to the pres- 
ence of  the high inner pressure Pol, displacing the stress 
~rr into the domain of  negative values. 

C O N C L U S I O N S  

The problem statement, to determine ther- 
mostresses in constructions made of  ablating com- 
posite materials, is given. Evaluation of  these stresses 



146 YU. I. DIMITRIENKO 

is very important  in high temperature techniques, for 
example in designing thermal protection for space- 
craft, ignition chambers for solid fuel engines, or con- 
struction resources made from composites for use in 
fires, etc. The example of numerical solution of the 
problem for non-stat ionary heating of a cylindrical 
shell shows that thermostresses have peculiarities for 
ablating composites that connect with internal gas 
generation in material and chemical shrinkage in 
coking. 
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