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Abstract—In designing a thermal protection made of ablating composite materials, constructors usually
make calculations only for a heat field and a rate of material ablation; strength calculations are usually
conducted only for determining thermoelastic stresses. However, there are known cases when thermal
protection constructions designed this way and made of glass-plastics have destructed due to the action of
the following effects that are usually not considered : pore pressure of gaseous pyrolise products generated
in heating a composite, and shrinkage of a composite in heating up to the pyrolise temperature. To take
account of these effects and conduct heat and strength calculations of thermal protection, in this paper a
new mechanical-mathematical model is developed wherein ablating composites are considered to be porous
multiphase media with phase transformations and chemical reactions of components in heating. The
distinctive peculiarity of the model is that it allows description of the effect of physical-chemical trans-
formations on a stress—strain state of the material.

INTRODUCTION

Ablating composite materials represent the unique
case when a non-stable system, that is polymer com-
posites at high temperatures, is used premeditatively
in crucial elements of construction, for example in
heat protection of vehicles, in determination of a glass-
plastic construction resource in fire etc.

The reason for non-stability of composites lies in
the fact that at high temperatures there are phase
transformations, i.e. thermodestruction of polymer
components with formation of a solid residue, usually
a coke, and generation of a large quantity of gases in
the pores.

At present, calculation methods for heat-mass
transfer processes in ablating composites are well
enough developed {1]: however, strength problems
for their use in construction have been insufficiently
studied. In the present paper the problem statement
on determination of thermostresses in construction of
ablating materials is given, an example of numerical
solution of the problem for a cylindrical shell is
presented, and peculiarities due to the presence of
heat-mass transfer in the material are shown.

MATHEMATICAL MODEL

An ablating composite material is considered to be
a multiphase system consisting of four phases: the
first phase is a thermo-stable filler (carbon glass fibers
which are thermostable in the considered temperature
interval in an inert medium); the second phase is a
solid polymer binder (epoxy-phenol, phenol and other
resins) which thermodestruct at high temperatures;

139

the third phase consists of solid products of ther-
modestruction (usually a coke) ; and the fourth phase
consists of gaseous thermodestruction products in
pores. If strains of solid phases are considered to be
small, gas filtration in the pores is assumed to be
subject to Darcy’s equation, and the heating process
is so relatively slow that temperature equilibrium has
time to reach steady state for all phases with the same
temperature, 6, then the heat-mass transfer equation
system for the porous multiphase medium described
is written in the following form [2, 3] :
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where ¢;, p, are volumetric concentrations and den-
sities of solid phases (i = 1, 2, 3), p, is the density of
gas in pores, ¢, is porosity, g is the stress tensor of all
solid phase collections, being a unified frame, c; is the
phase heat capacity, and R is the gas constant.

Volumetric coke concentration, and also porosity
and concentration of a solid frame ¢, can be ex-
pressed in terms of ¢, :

03 = (@2(0)— )1 —fo
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[m*(s*K~")]
Dy rate of a surface ablation [ms~']

E, elasticity modules of phases
[kgm~'s7?

f(x, ) shape of phase separation surface

J intensity of mass transfer from
polymer phase to gas [kg(m®s)~']

Jo material constant characterizing a
mass transfer from polymer phase to gas
(kg (m*s)~]

Pe gas pressure on an external composite
surface [kg(ms?)™']

p pore gas pressure [kg (ms®)~']

t time [s].

Greek symbols
%, 0, coefficients of heat phase expansion

NOMENCLATURE
b, material constants describing a change &,&;  strain tensor and its
of strength and elastic features of components
composites with temperature 0 temperature
¢y, ¢;  specific heat capacities of phases Ay components of a heat-conduction

tensor [kgm (s*K) ']

vy Poisson coefficients

Pepi  Dhase density [kgm ]
o stress tensor’s components.
Subscripts

bl (blow) indicator of parameters of
outflowing gas into the
surroundings

e (external) parameters related to the
surroundings with respect to the
considered domain

g (gas) parameters of a gas phase

i number of a composite phase

(i=1.....3)
ij indicator of a tensor component

K1 (i,j=1.2.3)

al coefficient of heat transfer [kg(s'K)™ '] S (solid) parameters of a solid

B.. Ba  shrinkage coefficients framework

r gasification coefficient V occupied by a composite

Ae®, Ae*  heat of volumetric w parameters on an external composite
(thermodestruction) and surface
surface ablation ~ indicator of a tensor.

ws=<p1+<pz<1—(l—ﬁ&)wz(m(lér)"—z o= pgt - Ink E )
P 03 Py 8

¢, =l—¢, ¢, =const (5

Function J describes heat—mass transfer intensity
in thermodestruction in accordance with Arrhenius’s
law:

Eﬂ
J = Jyp, exp(—R—>. (6)

I' is the gasification coefficient of the composite in
thermodestruction, and A and K are heat-conduction
and gas-permeability tensors, respectively, that
depend on the porosity ¢, :

=210 K=K"f(p) [lp,) =exp(Se,).
(7)

Here £°, K® are constant tensors and S is the material
constant.
Gas in pores is assumed to be ideal and perfect :

r=Rp,0 (8)

where p is pore gas pressure.
If we introduce a stress-tensor function F so that

where Ink F is the differential operator of incom-
patibility [4], then equilibrium equation (4) is satisfied
identically. To determine a stress—strain state in an
ablating composite, the compatibility equation for
strains ¢ [4] should be considered :

Inkg = 0. (10)

Constitutive relations

The thermodestruction process of composites can
be considered as a phase transformation of the poly-
mer phase into a collection of a new solid phase and
a gas phase. For media with internal phase trans-
formations of such type, constitutive relations of their
solid frame correspond to the model of viscoelastic
unstable medium, even if all the phases are elastic
media.

An ablating composite is assumed to be an ortho-
tropic material with orthotropy axes Ox,, i = 1,2, 3,
having a laminated structure, and the Ox, axis being
perpendicular to the layers.

The constitutive relations can be written in the
following form:
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CYLINDRICAL SHELL

Let us consider now a solution of the problem stated
above for a cylindrical shell subjected both to intensive
internal convective heating and internal pressure p,,
distributed uniformly at the inner surface r = rp.
Introduce a cylindrical coordinate system Or3z and
assume the composite material of the cylinder is cyl-
indrically orthotropic; then the constitutive relations
(11)—(18) keep their validity if, in place of Descartes’s
components o, ¢;, their physical components, are
substituted. One end of the cylinder, z = 0, is rigidly
fastened and at the other end the pressure p,; is given ;
the ends are assumed to be hermetic and heat-isolated.
The exterior cylinder surface, r = r,, is fastened to-
gether with a load-bearing shell. Due to thermo-
mechanical ablation, the surface r = rp(¢) will be
mobile.

Within the scope of these assumptions, the problem
(1)-(4), (13) solution is sought in terms of functions
@2 Py 0, F\=F and W, depending only on r and .
Equations (9) can be rewritten in the case as follows:

’

F
o  F o _ow F
@5 @sr @ Py

The rest of the stresses are equal to zero except a,,
which can be expressed by the formula

633 = Bro011 + 20022 —p(1 — B1o—B2o)
+aVE;(C—i33)
(22)

o, = (21)

~0
Vizdj

ﬁm:" ~

a,

Bro = — V23

where C(f) = &, is a function of time which can be
determined by the following approximate formula
(when Poisson effects at the cylinder end are neg-
lected) :

Pea(ri—ri)

R,
2E, J alrdr

R,

C=28— (23)

Here the designation F’=0F/dr is introduced.
Constitutive relations (11) and (13) are reduced to
the form:

& = §11 +B10C+ P10, +P12052
&7 = Ezz +B20C+ B0, + P20,

R . os (F
Wi+¢:sW,0, =;3(7 +‘ng> (24)
where
1 v3;
B = P 3~0
Eay Ea;
vi,0 V31V3o
=—————— i=1,2
0 T hal T B

f%ll =&, +P10(C—E53)+ Wip,s

‘%22 = é)11 +B20(C_é33) (25)

and heat deformations &, &, &, are expressed by for-
mulae (15) with indexes x = 1, 2, 3, respectively.

Compatibility equations (10) in this case are
reduced to the one, which after substituting relations
(9) and (11) into it, has the form

22>F/
¥

+<<@)’+#ﬁ”_ﬁ”)ﬂ (P(Baz+B12))

Ban(ﬁ;ﬁ
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fart

227611
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r

WheI'C BU = /j[/'/(ps'
Heat-mass transfer equations (1)—(3) for a cyl-
indrical shell have the form:

=0

Bz =B ) +E0 + (26)

020> = —J

1
(P0)® = ;(RKnr(pgp)/)’wLJF

o
pel =~ (31 r0) +¢,RK, 0 (p,0) —JA". (27)

Boundary conditions for equation system (26), (27)
have the form:

r=rp(l): Rp.0 = pe,

F
= TP
r

D

— i 0 = o (6. —0)— p,p, Dy Ae*

"’}'b]chKl 1 (pge)/(gc _0) (28)
F= <f+ = e Enhg
2 P r (4 2 (1'—“; V)

(pd) =0

where Ep, vy and Ay are the elasticity module, the
Poisson coefficient and the substrate thickness, respec-
tively.

The equation of the inner mobile surface has the
form :

29

rp(0) =ry. (30)

o = Dy

Introducing now a new mobile coordinate y in place
of r,

y=k(Or+b)

r,—r

_ (i —rp(f)
Fa—rp(f)

k0 = b = ra—ro(f)

(31
varying within the interval r, <y <r, forall 10
while rp(8) <r < r,.

Introducing the auxiliary function {(y, t)
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Fa—=ry

Dy, (_
ry —ro(D) \(r, —rp(1))?

y=>b(1)
><< ) +r2>—r2>. (32)

Then, passing to new variables (y, 1), the equation
system (26), (27) will be written in the form

o =

J
P2 +lph = — — (33)

2

(P.0)® +{pepy)

\ ,
- (RK”(_v—b)(ng)/) T (34)

. k* ’
pcl+ pelll = - ()w . (),v_h)0’>

+ k*RK; 0 (p 0) —JA®  (35)
= - B,
/f::f'wJr (ﬁlzz*‘ %‘) F’
B\ BB
+<<y—b + y—bh F
e | Baby
A3
+p(Bra+Bia) + ﬁ(ﬁ-:z—ﬁn):l_o (36)
3 7 F
Wi +(W 4.0 W, = ((l;x (m +(P_qp> (37)

where F’ = JF/Cy.
Boundary conditions (28) in variables (y,r) are
written in the form

r=rt F=—rppy Rp0=—p, (38)
— A kO = (ar — i RK (ng),)
x (0. —80)—p,p, D, Ae*  (39)

and the boundary condition (29) keeps its form.
Adjoining initial conditions to the system (33)—(38),
(29).

1=0: pe=py O0=0, W,=0

we get the complete problem statement to determine
functions ¢., p,, 0}, F and W, after showing that the
stresses 6, 6, 03 can be evaluated according to
equations (21) and (22).

02 = @b

COMPUTED RESULTS

Solving the problem was performed numerically
with the help of the step-by-step method using differ-
ence schemes and sweep procedures.

Computed results have been obtained for glass-
plastic on epoxy-phenol binder and silica fabric. In

computations the following values of the constants
were given :

by = 12K~ (s
by =05K"' (s>

by =042 by =5
by =022 by, =5

4y =20-10"°K™' a5, =2-100°K ' B, =5
0y = 4107 K™ 03, =2:107°K"' . =0.05
3 =4 107K~ 25, =2-100°K"" B, =005

p,=25100kgm™?
Py =22-10kgm™3

¢ = 0.6kJkg ' K-
=30 kIkg™ K
Ay =027TWtm P K™!

pr=12-10"kgm *
¢ =089kl kg ' K"
cr= 1.5k ke 'K
Ay =051Wtm*K™!
433 =05Wtm “K !
Ay =01Wtm K™ J,=32-10°kgm *s"'
EJR=55100K T =078
K°=18-10""s §=100 o, =200MPa
n=5 E =20GPa E,=20GPa
Ey=2GPa v, =027 v, = 0.021
vi; =0.021 G,, =8GPa
G., =0.72GPa G, =0.72GPa.

Geometric parameters and characteristics of the
load-bearing shell were chosen as follows :

ryir, =097 hp=2-10""m
vp =03 Ey=6-10" MPa.

Conditions of thermo-force loading the cylinder are
shown in Fig. 1: for time ¢ = 0.2 s the temperature 6,
and the pressure p, of gas flowing along the inside
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| | ]
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Fig. 1. Dependence of temperature 6, and pressure p,, of

external gas medium, temperature 6y of the cylinder surface

heated and relative thickness Ar of material, moved away in
time, where ¢ is time [s].
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Fig. 2. Distribution of temperature  and pore pressure p vs the cylinder thickness, taking account of
surface ablation. Symbols on curves are time ¢ [s].
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Fig. 3. Distribution of volumetric phase concentrations ¢,, ¢, and coefficient of change of elastic properties
&) vs the ablating cylinder thickness for different times. Symbols on curves are time ¢ [s].

of the cylinder rapidly reach a stationary state. In a
stationary interval of heating, the material surface
temperature 6, slowly increases, and simultaneously
the composite surface ablation occurs practically by
linear law [see Fig. 1, the curve Ar(f), where Ar =
(ro(®)—r)/r].

Due to the presence of a surface ablation, there
exists a solution only in the interval /() < F < 1;
therefore on the left from the point r = rp(¢) all the
functions terminate (Figs. 2-5).

As seen from Fig. 2, the pore pressure p is localized
in a comparatively narrow zone corresponding to the
interval where the temperature falls off. It is connected
to the fact that, in a colder zone where the composite
is not heated to thermodestruction temperatures, the
material gas-permeability is very small, but in a zone
coked, with porosity ¢, = 0.26, on the contrary, great

rates of gas filtration to the internal surface arise.
leading to equalization of p with the inner pressure
Dei-

In the computations the value of the initial material
porosity was varied, @) =0.05 and 0.1. A con-
siderable value of the inner pressure p., which is
characteristic for problems of this type, leads to an
increase in the compressing radial stress o, (Fig. 4),
having at initial time 7 < 3 s practically a linear dis-
tribution through the thickness. Peaks of stresses o,
which appear when ¢ > 3 s are connected to a local
growth of pore pressure p in a composite thermo-
destruction zone. For a material with initial porosity
¢, = 0.05, the value of these peaks is substantially
more than for ¢, = 0.1, and when ¢ > 12 s, local ten-
sile stresses arise in the composite.

A profile of the stress g, at initial time ¢ < 10 s is
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Fig. 4. Distribution of radial stress o, vs the ablating cylinder thickness. Symbols on curves are time ¢ [s].
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Fig. 5. Distribution of tangential stress g, vs the ablating cylinder thickness for different times. Symbols
on curves are time ¢ {s].

determined, in the main, by the presence of the inner
gas pressure p,, and by the temperature gradient. That
is why there are tensile stresses through all the cylinder
thickness and a minimum of &, at the internal surface
(Fig. 5). When ¢ 2 10 s, a material thermodestruction
becomes essential, leading to an increase in two
additional factors having an effect on the stress o,
a formation of local pore pressure and a composite
shrinkage in coking. The local pore pressure causes
local minimums of o, to appear, but the shrinkage, on
the contrary, leads to increasing the stresses o, at the
internal cylinder surface. Decreasing the glass-plastic
thickness practically to half-thickness due to surface

ablation leads to an increase in the maximum of
stresses o, from 60 to 85 MPa.

As follows from Fig. 5, it is tangential stresses g,
that are the most dangerous for similar types of glass-
plastic constructions that are connected to the pres-
ence of the high inner pressure p,,, displacing the stress
o, into the domain of negative values.

CONCLUSIONS

The problem statement, to determine ther-
mostresses in constructions made of ablating com-
posite materials, is given. Evaluation of these stresses
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is very important in high temperature techniques, for
example in designing thermal protection for space-
craft, ignition chambers for solid fuel engines, or con-
struction resources made from composites for use in
fires, etc. The example of numerical solution of the
problem for non-stationary heating of a cylindrical
shell shows that thermostresses have peculiarities for
ablating composites that connect with internal gas
generation in material and chemical shrinkage in
coking.
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